droplets are almost perfect spheres suggests that interfacial tension plays no role in the simulation. The additional fact that $U_c = U_d$ suggests that the ratio of viscosity of the dispersed and continuous phases is also not of importance.

Acknowledgments

The authors would like to thank NASA Kennedy Space Center for partial support of this research under Contract NAS10-11153. Thanks are also due to S. L. Soo for providing support of Thaddeus Niezniecki through the National Science

Foundation Undergraduate Research Program. Niezniecki helped in collecting droplet velocity data.

References

¹Sridhar, K. R., Chao, B. T., and Soo, S. L., "Pressure Drop in Fully Developed, Duct Flow of Dispersed Liquid-Vapor Mixtures at Zero Gravity," *Acta Astronautica*, Vol. 21, No. 9, 1990, pp. 617-627.

²Maxey, M. R., and Riley, J. J., "Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow," *Physics of Fluids*, Vol. 26,

April 1983, pp. 883-889.

³Batchelor, G. K., Binnie, A. M., and Phillips, O. M., "The Mean Velocity of Discrete Particles in Turbulent Flow in a Pipe," *Proceed*ings of the Physical Society B, Vol. 68, Dec. 1955, pp. 1095-1104.

Errata

Eigensolutions Sensitivity for Nonsymmetric Matrices with Repeated Eigenvalues

Angelo Luongo University of L'Aquila, 67040 L'Aquila, Italy

[AIAA Journal 31(7), pp. 1321-1328 (1993)]

URING production of this paper, some mistakes were not corrected. We regret these errors.

Pages 1326, 1327

In Eqs. (A6), (A7), A9), and (A11), index j runs in the interval [1, r].

In Eq. (A7b), $\lambda_1^{d_r}$ should be multiplied by α_{r0} .